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Problem Statement

Alzheimer’s patients experience a decrease in the functionality of their memory and ability
to learn and problem solve. Generally, the cause of symptoms relates to the rate of diffusion
of acetylcholine (ACh) in the synaptic cleft. This can be modeled by random walk diffusion
and the 1-D diffusion equation to estimate the how the change the diffusivity affects the
probability distribution of ACh in the synaptic cleft.

Background
Healthy Brain

Neurons are cells in the nervous system. These cells communicate with each other by
sending signals across the synaptic cleft, the space between the neurons, in the form of
neurotransmitters. ACh is a common neurotransmitter that when released from a neuron,
binds to a receptor protein on another neuron, causing the propagation of action potential
down that neuron [1].

Figure 1. ACh release in neuron.

Alzheimer’s Brain

Alzheimer’s disease is a type of {\; R
dementia, classified by loss of brain \ 2
function [2]. Common symptoms \
include memory loss, trouble with

problem solving, confusion, and
impaired judgment [2]. This disease

gradually gets worse over time. One
cause of the symptoms that
Alzheimer’s patients experience is
reduced diffusion of ACh in the
synaptic cleft [2]. Reduced diffusion Alzheimer cells

is caused by abnormal clusters of healthy cells
protein fragments called plaques
that build up on the branches of the
neurons [2]. Plaques cause an increase in the tortuosity of the path that the ACh must
follow to get from one cell to another [2]. This creates roundabout routes for ACh diffusion

Figure 2. Alheimer’s Cells Compared to Healthy Cells.



with contorted paths, dead-end spaces that trap molecules, and increased wall interactions
[2]. Thus, increased tortuosity results in a decrease in diffusivity because it takes the ACh
longer to travel from one neuron to another [2].

Mathematical Model

Assumptions

The mathematical model assumes that the diffusion of ACh occurs in a quiescent fluid, and
the diffusivity constants account for the tortuosity and complete path that the ACh takes. In
addition, according to this model, the ACh only moves in the x direction and starts diffusing
at x=0, as seen in Figure 3. The particle cannot stay in the same spot over time and the
probability of stepping left and right is equal. Particles are small enough in their
surrounding area that an infinite domain can be assumed across the x-axis. Lastly, this
model assumes that neurons are not destroyed due to Alzheimer’s.

Figure 3. The axis of interest in the synaptic cleft.

Random Walk

Diffusion of ACh can be modeled by random walk by looking at the individual path that
each molecule takes, and then graphing the path of the molecule with respect to time.
Figure 4 illustrates this phenomenon.
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Figure 4. Random walk of a particle over time with 50/50 chance of stepping left/right.



For a more accurate model, random walk can be modeled with the Markov Process, which
determines the probability, P, of a particle existing in a given space and time. It is described
by the following equations:

P(x,t) = Z P(x £ nlAx,t — At)
n=-—oo
=aP(x + Ax,t — At) + bP(x — Ax,t — At)

where Ax is the position step, At is the time step, and a and b are the probabilities of a
particle moving left and right respectively. Assuming a = b:

1 1
P(x,t) = EP(x + Ax,t — At) +§P(x — Ax,t — At)

This probability can be plotted versus position and time to model the chance of a particle
being in a specific space at a specific time. The model follows a Gaussian distribution and
can also be modeled by the 1-D diffusion equation [3].

Diffusion Equation
The derivation of the diffusion equation from the Markov Process is as follows:

P(x,t) —P(x,t —At) = %[(P(x + Ax,t — At) + P(x — Ax, t — At))] — P(x, t — At)

As At > 0and Ax - 0
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This model is similar to the Markov Process and models the probability of a molecule being
at a specific place at a specific time. This is the same result that Einstein proved can be used
to model the diffusion of small particles [4].

Solving the Analytical Solution

This model simulates the release of ACh across the synapse. In order to simplify the
calculations, the model will consider the release of a single vesicle. The diffusion equation
models this release.
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The instant the ACh is released from the vesicle will be considered the initial condition and
the time is set equal to zero.
p(x,0) = g(x) =5(x), —0=x =00

This will model ACh over an infinite domain, which will be the boundary conditions for the
model.

p(=0,1)=0

p(e,1) =0

In order to compare the diffusion equation to the random walk model, the diffusion
equation must first be solved for the probability distribution. Since this is being modeled
on an infinite domain Fourier’s Transforms can be used.

P(w,t) = F[ p(x,1)] = j p(x,)e™ " dx

The definition of the Fourier Transform defines the first and second derivatives of a
function in the Fourier domain as follows:

F[ip(x,t)] = joP(w,t)
ox

2

F %p(x,t) = (jo) P(w,1) = —0*P(w,1)

These transforms are plugged back into the original equation, and the equation is solved
for the transform of the probability distribution.

d
EP(Q)’Z) =-Dw’P(w,t)

P(w.t) = P(w,0)e™”""

Next the inverse Fourier transform is taken to convert the function from the Fourier
domain, back into the time domain.

1 o ,
D =F'Pw,)]=—| Pw,)e’™dw
peen) = F[P.n] = [ Pl.ne
Using this formula the probability distribution is found.
17 2
,t - P ,t -Dw -t ijd
p(x,1) . fw (,0)e™"" e’ dw

The terms inside the integral are still in the Fourier domain. P(w,0) is the Fourier
transform of the initial condition.

P(@,0) = [ p(x,0)e’"dx

P(w,0) = }g(x)ejmdx



e is the Fourier transform of another function, h(x).

h(.x) - Fx_l(e_Dth)
1 ) 2 .
l’l — -Dw“t ]wxd
(x) oy f e e dw

Considering only the exponents the following simplifications can be made:

2 2 . \2 2
Dt =Dl 0% o - |- bl B
Dt 4Dt 2Dt 4Dt

This is plugged back into h(x), and the substitution method is used to simplify the equation.
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By Euler’s method,
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Convolution is now used to find a function for the probability distribution in the time
domain.

p(x,1) = g(x) *h(x)
By definition:

plet) = [ g(x = x)h(x,)dx,

XZ

Plugging in h(x) = \/ﬁe—“’f and g(x) = 6 (x),

p(x,t) = f:é(x - xo) m
e_“% dx,

1 o
p(x,t) = mf_wd(x—xo)

However, this is a rather complex integral to solve and would be more easily solved using
the definition of the Laplace transform.

g*h=GxH = (1)XL Y(H) = h(x)



Therefore,
p(xt) =h(x)

%

T4Dr

1
p(x,t) =m€

Results & Discussion

Model Comparison
The model is represented through various methods using MATLAB. The following

constants are used:
Dhealthy = 800 um?/sec and Daizheimers = 547 um?/sec [5][6].

The three methods used are a macroscopic analytical solution, a macroscopic finite
difference solution and a microscopic numerical random walk solution. Figures 5-7,
respectively, depict these solutions for a healthy brain.

Diffusion of ACh in Healthy Brain: Analytical Solution
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Figure 5. Analytical solution of diffusion of ACh across the synaptic cleft in a healthy brain.



Diffusion of ACh in Healthy Brain: Finite Differences
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Figure 6. Finite difference solution of diffusion of ACh across the synaptic cleft in a healthy brain.

Diffusion of ACh: 5000 Particles in Healthy Brain: Random Walk
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Figure 7. Random walk solution of diffusion of ACh across the synaptic cleft in a healthy brain.
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These graphs model the probability distribution of ACh across the synaptic cleft. The initial
impulse is modeled in all three figures. The analytical solution in Figure 5 depicts the
distribution of the ACh over time. The bulk of the concentration diffuses almost
instantaneously in a Gaussian distribution. The synaptic cleft is about 30 nm from the
origin. With this model, ACh reaches the neuron within the first time step (1.67 x 10-7
seconds). Complete ACh diffusion is estimated to last about 2 x 10-4 seconds [7]. Due to the
assumptions made, this model shows qualitative agreement with the ACh diffusion;
however, it does not show quantitative agreement.

In comparison, the other methods also show qualitative agreement with ACh diffusion and
the analytical solution. As seen in Figure 6, the finite difference solution does not as
accurately depict the Gaussian distribution. This is because the finite difference approach is
an approximation.

The random walk model is depicted in Figure 7. This model averages the probability of
5000 ACh particles randomly walking across the synaptic cleft. The solution appears more
intermittent than the analytical solution. This is because the model calculates the
probability distribution by counting the amount of particles in a defined increment of time
and space across the domains and graphing the resulting histogram. This model indeed
proves that the microscopic random walk method is equivalent to the macroscopic
diffusion method.

Healthy Brain vs. Alzheimer’s Brain
The analytical solution is the most accurate representation. This model is used to compare
the model in a healthy brain and an Alzheimer’s brain. Figures 8-9 depict this comparison.

Diffusion of ACh in Healthy Brain: Analytical Solution B) Diffusion of ACh in Alzheimer's Brain: Analytical Solution

Probability

Position, (um) ol Time, (5) Position, (um) ’ Time, (3)

Figure 8. Analytical solution comparing ACh diffusion in a A) healthy brain B) Alzheimer’s brain.

The Alzheimer’s brain is modeled with a lower diffusivity than the healthy brain. The lower
diffusivity is caused by the increase in tortuosity in the neuronal extracellular space. Over
time, these graphs appear to be almost identical. However, the region of interest is only
from -30 um to 30 um over the initial time steps. A comparison of the two probability
distributions at the fourth time step (6.68 x 10-7 seconds) can be seen in Figure 9.
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Figure 9. Comparison of ACh in a health brain versus an Alzheimer's brain at 6.68 x 107 seconds.

As expected, the ACh molecules in a healthy brain have a higher probability of reaching the
synaptic cleft than the Alzheimer’s brain. This probability difference is apparent across all

times. Although this difference appears small, it has a large affect on functionality in
Alzheimer’s patients.

Conclusion

As seen in Figures 5-7, ACh diffusion across the synaptic cleft can be qualitatively modeled
by a partial differential diffusion equation on an infinite domain. The analytical solution
produces the most accurate results, depicting the Gaussian distribution of the ACh particles.
In addition, Figure 7 depicts that the microscopic random walk of particles is equivalent to
the macroscopic diffusion model. Finally, this model proves that increased tortuosity,

leading to decreased diffusion, is one cause of decreased brain function in Alzheimer’s
patients.

Future Work

Although this model makes qualitative conclusions, quantitative analyses were inaccurate
because of the assumptions made. In future models, all three dimensions could be
considered in a non-quiescent fluid. This would better represent the full path the ACh
travels and introduce a drift that the molecules experience in a non-quiescent fluid. In
addition, the model could determine how severe a patient’s Alzheimer’s condition is by
varying the diffusivities. A threshold of the diffusivity necessary to consider a brain
unhealthy could be determined. Finally, the mechanism for ACh diffusion could be better
represented by considering the concentration of ACh, the occurrence of its release, and the
amount of ACh that undergoes reuptake.
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Appendix B: MATLAB Code

Code for Analytical Solution:

%% constants

D1 = 800;

D2 = 547;

%% domain

dt = 1.67e-7;

tmesh = 0:dt:2e-5;

nt = length(tmesh);

$Normal brain

dxl = sqrt(2*D1l*dt);

xmeshl = -0.5:dx1:0.5;

nx = length(xmeshl);

%% solution on infinite domain using Fourier
%analytical solution

sol infl = (4*pi*Dl*tmesh' * ones(l,nx))."(-.5) .* exp(-(4*Dl*tmesh).” (-
1)' * xmeshl.”2);

normalizedl = sol infl/max(abs(sol _infl(:)));
figure(1l)

surf (tmesh,xmeshl,normalizedl’', 'EdgeColor', 'none')
title('Diffusion of ACh in Healthy Brain: Analytical
Solution', 'FontSize',14)

xlabel('Time, (s)', 'FontSize',614);
ylabel('Position, (um)','FontSize',14);

zlabel( 'Probability', 'FontSize',14);

$Alzheimer's brain

dx2 = sqrt(2*D2*dt);
xmesh2 = -0.5:dx2:0.5;
nx = length(xmesh2);

% solution on infinite domain using Fourier

sol inf2 = (4*pi*D2*tmesh' * ones(1l,nx))."(-.5) .* exp(-(4*D2*tmesh).” (-
1)' * xmesh2."2);

normalized2 = sol inf2/max(abs(sol _inf2(:)));

fiqgure(2)

surf (tmesh,xmesh2,normalized2', 'EdgeColor', 'none')

title('Diffusion of ACh in Alzheimer''s Brain: Analytical

Solution', 'Fontsize',b14)

xlabel('Time, (s)', 'FontSize',14);

ylabel('Position, (um)','FontSize',14);

zlabel( 'Probability', 'FontSize',14);

figure(3)

hold on

plot (xmeshl,normalizedl(50,:),'r")
plot (xmesh2,normalized2(50,:),'b")
title('Diffusion of ACh Healthy Br
6.68E-7 s','Fontsize',14)
xlabel('Position, (um)','FontSize',14);
ylabel( 'Probability', 'FontSize',614);

legend( 'Healthy Brain', 'Alzheimer''s Brain');
hold off

7
7
ain vs. Alzheimer''s Brain at Time =
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Code for Random Walk Analysis:
clear all;
clc;

DO 800;
dt = 1.674E-7;
step = 1000;
traj 5000;
kick sqrt(2*D0*dt) ;
endtime = step*dt-dt;
time = 0:dt:endtime;
p 1l 0.5;
p.r = 0.5;
Xxc = zeros(l,traj);
for j = l:step
p = rand(1l,traj);
for i=l:traj
if j ==1
xc (i) = 0;
elseif p(i) < p 1
xc(i)=xc(i)-kick;
else
xc(i)=xc(i)+kick;
end
end
x = —(step*kick+kick/2)/50:kick: (step*kick+kick/2)/50;
n = histc(xc,x);
n = n(l:end-1)./traj;
y(1:40,3) = n;
end

zplot = y';
xplot -step*kick/50:kick: (step*kick/50)-kick;
yplot = O:dt:endtime;

figure(1l);

surf (yplot, xplot, y);

xlabel('Time, (s)');

ylabel('Position, (um)');

zlabel( 'Probability');

title('Probabilty of 5000 Particles in Healthy Brain: Random Walk');
y(:,121:1000) = [];

fiqgure(2)

yplot2 = (0:dt:2E-5);

surf (yplot2,xplot,y, 'EdgeColor', 'none');

title('Diffusion of ACh: 5000 Particles in Healthy Brain: Random
Walk', 'FontSize',14);

xlabel('Time, (s)', 'FontSize',14);

ylabel('Position, (um)','FontSize',14);

zlabel( 'Probability', 'FontSize',14);



Code for Finite Differences Solution:

D = 800;

dt = 1.67e-7;

dx = .05;

xmesh = -.5:dx:.5;

tmesh = 0:dt:2e-5;
nx length(xmesh);
nt length(tmesh);
stepsize = D * dt / dx"2;
sol fd = zeros(nt, nx);
sol fd(1l, :) = (xmesh == 0);
for t = 1:nt-1
for x = 2:nx-1
sol fd(t+l, x) = sol fd(t, x) + stepsize * ...
(sol fd(t, x-1) - 2 * sol fd(t, x) + sol fd(t, x+1));

end
end
fiqgure(1l)
surf (tmesh,xmesh,sol fd', 'EdgeColor', 'none')
title('Diffusion of ACh in Healthy Brain: Finite
Differences', 'Fontsize',b14)
xlabel('Time, (s)', 'FontSize',14);
ylabel('Position, (um)','FontSize',14);
zlabel( 'Probability', 'FontSize',14);

Code for Random Walk Example:
clear all;

clc;
DO = 574;
dt = 1.674E-7;

step = 100000;
frames = step/100;
traj = 200;
kick = sqrt(2*D0*dt);
time(l:frames) = 0;
randx(l:frames) = 0;
for i = l:traj
xc(1l:3) = 0;
timet = 0;
for j = l:step
timet = timet + dt;
R = randn(1l,3);
xXc = xXc + kick*R;
if rem(j,100) ==
time(j/100) = timet;
randx(j/100) = xc(1l);
end
end
end
figure (1)
plot(time(l:frames), randx(l:frames), 'k');
xlabel('Time, (s)', 'FontSize',14);
ylabel('Position, (um)','FontSize',14);
title('Position of a Single Particle Over Time', 'FontSize',614);



